
T h e P r a g m a i c I n t r o f o r J a v a D e v e l o p e r s

H O W T O C O P E W I T H
G E O S P A T I A L

2 8 S e p t e m b e r 2 0 0 7

TABLE OF CONTENTS

1Goals ..3

2Welcome ...4

3Introduction and Setup ..5

3.1Project for Required Jars ...5

3.2Project for This Workbook ..8

3.3Jar to Source AssociationS ..9

3.3.1Alternative for Power Eclipse Users9

4WMS Lab ...10

4.1Connect to a WMS ..10

4.2Operations on a Layer ...1 1

5CSV to Shape ..14

6Postgis Lab ..16

7Image Lab ...19

8Shape Lab ...21

1 GOALS

After completing this workbook, you will have:

• Installed a Java Development Kit onto your computer

• Installed GeoServer from the Windows installer

• Started up and Customize GeoServer

• Started the Open Layers WFS-T Demonstrate

2 WELCOME

Are you new to GeoSpatial? Are you not cool enough to be a Neo-
Geographer AJAX empowered meta tagging Ruby wonder kid? Does
scientific mumbo-jumbo make your head hurt? Are you (gasp!) just
out to get the job done?

This workbook offers a survey of the Java GIS landscape; if you are
new to the GeoSpatial scene it offers an introduction to current
concepts and projects, and how to avoid common pitfalls.

We will start with something nice, fun and visual - practicing
fetching content from Web Map Servers on the Internet using the
GeoTools toolkit. We can talk about what is going on, but the focus
is on you and the code you need to get the job done.

Moving on, we will explore what maps are made of, sugar and spice
and all things nice? Would you believe they are made of Features
(literally things you can draw on a Map), Geometry (what to actually
draw) and details like coordinate reference systems, units and
projections.

The good news is all this stuff is captured at the Java level as nice
normal objects by the GeoTools and Java Topology Suite projects.
There are utility classes around so we can avoid going down into
crazy scientific detail.

We will work with a couple of common GeoSpatial data formats and
show how to make queries and modify information.

On the visualization side of things we will make use of one of the
available rendering systems and do so with Style. Well, we can show
you how to use a Style Layer Descriptor document and then hack
apart the result to see what makes it tick.

3 INTRODUCTION AND SETUP

There are many really good Java toolkits and libraries out there. We
are going to focus on the GeoAPI, JTS and GeoTools libraries.

• GeoAPI contains interfaces (and javadocs) for many of the
concepts in the geospatial world. These interfaces are
informed by OGC and/or ISO specifications if applicable.

• JTS Topology Suite is an implementation of Geometry (ie
Point, Lines and Polygons) that matches up with the Simple
Feature for SQL specification. You will find JTS code has
been ported to C++ and .NET.

• GeoTools is an implementation of everything else from
referencing (so we know where the shapes are located) to data
access and rendering.

3.1 PROJ E C T FOR REQU I R E D JAR S

In this section we are going to create a new project to hold all the
library jars, other projects in our workspace are going to depend on
this project.

1. The first task is to get the libraries ready to go in our IDE. We are
using Eclipse (http://www.eclipse.org/downloads/) for our
example but the same principles apply for NetBeans (or even
ANT).

2. Download the latest stable release of GeoTools from
http://docs.codehaus.org/display/GEOTOOLS/Downloads

3. For this Workbook I used the following two files

• gt2-2.4-RC0-bin.zip
All the jars needed for GeoTools

• gt2-2.4-RC0-src.zip
The source code so you can step through in the debugger

4. Start up Eclipse

5. Create a new Java Project using File > New > Java Project in the
menu bar.

6. Project name: GeoTools

Welcome FOSS5G Lab

participants – your

computer has already

been set up with Eclipse

and the required source

code.

You will find that many

of the wiki instructions

make use of a tool

called Maven. Maven is

an apache build tool

like ANT or MAKE that

makes that downloads

jars as needed.

http://www.eclipse.org/downloads/
http://docs.codehaus.org/display/GEOTDOC/03+First+Project

7. Press Finish

8. We can now place our GeoTools downloads into this project:
Unzip the gt2-2.4-RC0-bin.zip file to produce a new folder:
gt2-2.4-RC0

9. Just drag the gt2-2.4-RC0-src.zip file into your eclipse project.
Here is what it looks like when you are done

10.If you open up your bin folder you can count 115 jars – that is a
lot of code! We are going to remove jars that we are not going to
use in the workbook.

11.We only need one epsg plugin – please REMOVE:
gt2-epsg-access-2.4-RC0.jar
gt2-epsg-postgresql-2.4-RC0.jar
gt2-epsg-wkt-2.4-RC0.jar

12.Some of the database require you to supply a driver; for now
please REMOVE:
gt2-arcsde-2.4-RC0.jar
gt2-db2-2.4-RC0.jar
gt2-oracle-spatial-2.4-RCO.jar

13.Now that we have a good list of jars we can add them to our Java
Build path.
Right click on the project and select properties

14.Choose Java Build Path in the list property pages.

15.Select the Libraries tab

16.Press the Add JARs button

7-Zip is a good choice

when unzipping files on

windows.

We only need one

“epsg” plugin and epsg-

hsql is really good.

17.Select all the jars in your gt2-2.4-RC0 folder

18.Switch to the Order and Export tab

19.Press Select All

20.Deselect your JRE System Library

21.And press OK

3.2 PROJ E C T FOR THIS WOR K B O O K

We can now create additional projects that depend on our GeoTools
project.

1. From the file menu create a New Java Project

2. Project name: Example

3. Press Next

4. Switch to the Projects tab and press Add...

5. Select the GeoTools project we made earlier

6. And press OK

7. From the file menu File > New > Class

8. Package: org.geotools.demo

9. Name: WMSLab

10.All the files are available on this page:
http://svn.geotools.org/geotools/branches/2.4.x/demo/example/src/
main/java/org/geotools/demo/

11.Select the WMSLab.java link to show the code we are going to
start with

12.Select All and Copy

13.Return to eclipse and press Paste

14.You can repeat this process for each section of the workbook

http://svn.geotools.org/geotools/branches/2.4.x/demo/example/src/main/java/org/geotools/demo/WMSLab.java
http://svn.geotools.org/geotools/branches/2.4.x/demo/example/src/main/java/org/geotools/demo/
http://svn.geotools.org/geotools/branches/2.4.x/demo/example/src/main/java/org/geotools/demo/

3.3 JAR TO SOU R C E AS S O C I A T I O N S

The first time you go to look at any of the GeoTools classes you will
need to tell Eclipse where the source code for that jar is.

1. Open up a GeoTools class by typing Control-Shift-T this will
bring up the Type finder

2. Enter the class name GeoTools (A class that records the current
version number)

1. From the "Source not found" editor press the Attach Source...
Button.

2. Press the Workspace button

3. Select the gt2-2.4-RC0-src.zip

4. And press OK

3.3.1 Alternative for Power Eclipse Users

If you are interested in the details, the above steps made a change to
your .classpath file:

<classpathentry exported="true" kind="lib"
 path="gt2-2.4-RC0/gt2-api-2.4-RC0.jar"
 sourcepath="gt2-2.4-RC0-src.zip"/>

You can quickly cut and paste sourcepath="gt2-2.4-RC0-src.zip for
the rest of the gt2 jars.

4 WMS LAB

We are going to start in nice pragmatic fashion by cheating; rather
than draw a map of our own we are going to talk to a server and ask
it to do the hard work.

We are starting with the outline of a class available here
WMSLab.java .

4.1 CONN E C T TO A WMS

1. To start please open the WMSLab file and add the following to
your main method.
public static void main(String[] args) throws Exception {
 URL server = getServerURL(args);
 WebMapServer wms;

 System.out.println("Connecting to " + server);
 wms = new WebMapServer(server);

 System.out.println("Welcome");
 WMSLab wmsLab = new WMSLab(wms);
 wmsLab.setVisible(true);
}

2. That is right connecting to a WMS is as simple as passing the
URL to the service. Have a look at the getServerURL method to
see some example servers.

3. The first thing we are going to do is have a look a at the
“capabilities” of the WMS. The capabilities bean describe the
operations the server can do and the service itself.

4. To obtain the title from the capabilities fill in the following
getWMSTitle method
public String getWMSTitle(WebMapServer wms) {
 WMSCapabilities capabilities = wms.getCapabilities();
 Service service = capabilities.getService();
 String title = service.getTitle();
 return title;
}

5. We are going to run the application just so you can see us actually
connecting to the a WMS. If you get a chance to install GeoServer
on your machine you will find this a nice quick way to test
functionality. We have listed several other recommended servers
in the source code.

This workbook assumes

you are running the

default GeoServer

installation

http://svn.geotools.org/geotools/branches/2.4.x/demo/example/src/main/java/org/geotools/demo/WMSLab.java
http://svn.geotools.org/geotools/branches/2.4.x/demo/example/src/main/java/org/geotools/demo/WMSLab.java

6. Select WMSLab in the Package Explorer

7. Press the Run Button

8. The application will start and prompt your for a WMS

9. Please select the default local geoserver shown above if you have
GeoServer installed and running (check the start menu).

10.Congratulations, now let's start getting graphical.

4.2 OPER A T I O N S ON A LAYE R

1. Please cut and past the following into getLegendGraphics
public Icon getLegendGraphics(Layer layer) {
 Icon icon = null;
 WMSCapabilities capabilities = wms.getCapabilities();
 WMSRequest request = capabilities.getRequest();
 OperationType description =
 request.getGetLegendGraphic();
 if (description == null) return null;

 GetLegendGraphicRequest legendGraphicsRequest = wms
 .createGetLegendGraphicRequest();
 legendGraphicsRequest.setLayer(layer.getName());
 legendGraphicsRequest.setStyle(getNamedStyle(layer));
 legendGraphicsRequest.setFormat((String)
description.getFormats()
 .iterator().next());
 URL url = legendGraphicsRequest.getFinalURL();
 return new ImageIcon(url);
}

2. This time we are using the WMSRequest bean to obtain
information about the getLegendGraphic OperationType. Not all
WMS servers support this operation so we are careful to check if
the value is null.

3. We use the WebMapServce class to create a
GetLegendGraphicRequest. We will our new request with the
details about the layer, style and format and ask it for the final url
we can use to obtain the image.

4. We are going to hook the getMap method up in a similar fashion.
private void getMap(Layer layer) throws Exception {
 GetMapRequest mapRequest = wms.createGetMapRequest();
 String style = getNamedStyle(layer);
 mapRequest.addLayer(layer, style);

 mapRequest.setFormat(getImageFormat(wms));
 CRSEnvelope box = getCRSEnvelope(layer, null);
 if (box == null) {
 box = layer.getLatLonBoundingBox();
 box.setEPSGCode("EPSG:4326");
 }
 mapRequest.setSRS(box.getEPSGCode());
 mapRequest.setBBox(box);
 mapRequest.setDimensions(
 panel.getWidth(), panel.getHeight());
 URL url = mapRequest.getFinalURL();
 ImageIcon load = new ImageIcon(url);
 image = load.getImage();
 panel.repaint();
}

5. Now when you run the program you can select a layer and press
the GetMap button.

6. We have an example of fetching several layers at once, change the
getMap() callback method to the following and have a look.
public void getMap() {
 try {
 Object selection[] = layers.getSelectedValues();
 List layerList = Arrays.asList(selection);
 getMap(layerList);
 } catch (Exception e1) {
 image = null;
 }
}

5 CSV TO SHAPE

On the other extreme we have the defacto file format of spatial data
the ESRI shapefile. In this example we are going to create a shapefile
from a really simple comma separated value file just to get use to the
idea.

1. To start with let's create a really simple CSV file in Notepad.
Please create a new file landmarks.csv file with the following
contents.
"Latitude","Longitude","Name"
-123.31,48.4,Victoria
0,52,London

2. To start we will grab our csv file from the user and create the
schema for our new shapefile (like the file header). Add the
following to main
File file = getCSVFile(args);
FeatureType type = DataUtilities.createType("Landmarks",
 "location:Point,name:String");

3. Now we can read our csv file in line by line and add features one
by one to a FeatureCollection we have in memory.
FeatureCollection collection =
FeatureCollections.newCollection();
BufferedReader reader = new BufferedReader(new
FileReader(file));
GeometryFactory geometryFactory = new GeometryFactory();
try {
 String line = reader.readLine();
 System.out.println("Header: " + line);
 for (line = reader.readLine(); line != null; line =
reader
 .readLine()) {
 String split[] = line.split("\\,");
 double longitude = Double.parseDouble(split[0]);
 double latitude = Double.parseDouble(split[1]);
 String name = split[2];
 Coordinate coordinate = new Coordinate(longitude,
latitude);
 Point point =
geometryFactory.createPoint(coordinate);
 Feature feature = type.create(new Object[] { point,
name });
 collection.add(feature);
 }
} finally {
 reader.close();
}

Don't tell the Open

Street Map project but

this is just a guess of

where London is.

4. The important part of the above example is the use of
GeometryFactory to create a Point. This is the famed JTS
Geometry classes which you can use to do all kinds of hands on
spatial operations.

5. Now that we have the some Features we can create a new
shapefile.
File newFile = getNewShapeFile(file);

DataStoreFactorySpi factory = new
ShapefileDataStoreFactory();

Map create = new HashMap();
create.put("url", newFile.toURI().toURL());
create.put("create spatial index", Boolean.TRUE);

ShapefileDataStore newDataStore = (ShapefileDataStore)
 factory.createNewDataStore(create);
newDataStore.createSchema(type);
newDataStore.forceSchemaCRS(DefaultGeographicCRS.WGS84);

6. Finally we can use a transaction to write the contents to disk. The
FeatureStore interface contains methods to add, modify and
remove features.
Transaction transaction = new DefaultTransaction("create");
String typeName = newDataStore.getTypeNames()[0];
FeatureStore featureStore = (FeatureStore) newDataStore
 .getFeatureSource(typeName);
featureStore.setTransaction(transaction);
try {
 featureStore.addFeatures(collection);
 transaction.commit();
} catch (Exception problem) {
 problem.printStackTrace();
 transaction.rollback();
} finally {
 transaction.close();
}

7. Even for simple file formats like shape the GeoTools library has
gone to the trouble introduce the concept of Transactions
(complete with rollback).

8. If you are finished try loading your shape file with the following
tools:

● uDig

● QGis

These applications are

installed on your lab

computer. If you are

working at home they

are a quick download

away.

6 POSTGIS LAB

Moving on from shapefiles – in this lab we bring out the big guns a
real spatial database. If you you are working in an enterprise that has
Oracle, DB2 or even (gasp!) ArcSDE you can use the lessons in this
lab to connect to your existing infrastructure.

1. In the last example you saw us create a shape file in a pretty odd
fashion (using a Map? With a URL?) and you probably thought we
were crazy.
Hopefully this make the practice a little more clear – update your
main method to contain the following:
Map connectionProperties = getConnectionProperties(args);
DataStore dataStore =
 DataStoreFinder.getDataStore(connectionProperties);

2. We are going to ask the user for connection information; and we
are going to look up on the classpath for the “best”
implementation. If you write your application this way once –
your user can work with ArcSDE, DB2, Oracle, PostGIS and
Shapefile.

3. We are just going to do a quick sanity check to make sure we
connected.
String[] typeNames = dataStore.getTypeNames();
if (typeNames == null) {
 JoptionPane.showConfirmDialog(null,
 "Could not conntect");
 System.exit(0);
}

4. And then start up a nice window to work with your DataStore.
JQuery dialog = new JQuery(dataStore);
dialog.setVisible(true);
dialog.dispose();
System.exit(0);

5. Here is what that looks like when run and about to connect to the
same www.refractions.net database. To connect please use “demo”
as the password.

6. When connected the application looks like this.

7. We are going to spend the rest of this section filling in the details
and talking about what information is available.

8. The most important thing is to request a FeatureCollection from
the database. This is going to occur in a couple of steps – creating
a Filter from “Common Query Language”.
public FeatureCollection filter(String text) throws
Exception {
 Filter filter;
 filter = CQL.toFilter(text);

9. Figuring out the typeName and setting up a query,
 String typeName = (String)
 typeNameSelect.getSelectedItem();
 DefaultQuery query = new DefaultQuery();
 query.setTypeName(typeName);
 query.setFilter(filter);
 query.setMaxFeatures(1000);

10.And finally requesting a FeatureCollection:

The connection settings

for FOSS4G

database: example

user: postgres

password: postgres

http://www.refractions.net/

 FeatureSource table =
dataStore.getFeatureSource(typeName);
 return table.getFeatures(query);
}

11.Here is what that looks like in action:

12.Here are some more filters to try out:

• include
• authority="Fraser"
• BBOX(the_geom, 1200000, 450000, 1400000, 460000)

13.The CQL filter syntax we are using here can be coverted to the
more common (and capable) Filter 1.0 XML format. Fill in the
display(Filter) method shown:
protected void display(Filter filter) throws Exception {
 FilterTransformer transform = new FilterTransformer();
 transform.setIndentation(2);
 String xml = transform.transform(filter);

 show.setText(xml);
}

7 IMAGE LAB

A raster file or image format is called a GridCoverage (a coverage is
something that completely covers an area; and a raster just happens
to be arranged in a grid – who thinks up this stuff?).

The raster support available is really cool and based on Java
Advanced Imaging and Image IO libraries.

1. We are going to focus on a specific file format this time out -
“World Plus Image” that consists of a normal PNG, GIF or JPEG
file combined with a text file that describes where in the world it
is located.

2. In this lab we are going to be filling in the main method to open
up WorldImageReader.
File file = getImageFile(args);
WorldImageReader reader = new WorldImageReader(file);

3. We are then going to set up a MapContext describing what we
want to see on the screen.
MapContext map = new DefaultMapContext(reader.getCrs());
Style style = createStyle();
map.addLayer(reader.read(null), style);
map.setAreaOfInterest(new
ReferencedEnvelope(reader.getOriginalEnvelope()));

4. Finally we can show our Map using a utility class called
JmapPane.
showMap(map);

5. Run this application and point it and the clouds.jpg file

The sample dataset

includes several image

files clouds.jpg and

earthlights.jpg.

6. You can use the buttons to change the mode between zoom in,
zoom out and moving the image around.

7. The style used to display the map was created around a single
RasterSymbolizer. Try modifying the following code to change the
opacity.
private static Style createStyle() {
 StyleFactory styleFactory =
 CommonFactoryFinder.getStyleFactory(null);
 RasterSymbolizer symbolizer =
 styleFactory.createRasterSymbolizer();
 Rule rule = styleFactory.createRule();
 rule.setSymbolizers(new Symbolizer[] {symbolizer});
 FeatureTypeStyle fts =
 styleFactory.createFeatureTypeStyle();
 fts.setRules(new Rule[] {rule});
 Style style = styleFactory.createStyle();
 style.addFeatureTypeStyle(fts);
 return style;
}

8 SHAPE LAB

Finally we are going to open up a shape file and draw in on the
screen. This time out you can have considerable flexibility to modify
the style.

• You can create rules using the same Filter concepts covered
in the PostGIS lab. Rules select which features are going to be
draw.

• You can define “Symbolizers” that define how lines, points,
polygons and text are displayed. The symbolizers can make
use of expression – allowing both the use of feature data and
on the fly calculations during rendering.

• Finally you can define several rules each with more than one
symbolizer making for some very sophisticated effects.

1. This lab looks very similar to the earlier examples – please fill in
the following main method.
public static void main(String[] args) throws Exception {
 File file = getShapeFile(args);

 ShapefileDataStore shapefile = new
ShapefileDataStore(file.toURL());
 String typeName = shapefile.getTypeNames()[0];
 FeatureSource featureSource =
shapefile.getFeatureSource();
 FeatureType schema = featureSource.getSchema();
 CoordinateReferenceSystem crs =
schema.getDefaultGeometry()
 .getCoordinateSystem();

 MapContext map = new DefaultMapContext(crs);
 Style style = createStyle(file,schema);
 map.addLayer(featureSource, style);

 showMap(map);
}

2. This time we are going to look into creating a style for each kind
of content. The create style looks at the instanceof the “default
geometry” indicated by your schema in order to figure out what
kind of content is being displayed.

3. For all of these examples we will make use of a factory
(StyleFactory) to create a Style, we will also make use of a
FilterFactory to create the Expressions used to look up feature
properties using Xpath, preform calculations and simply hold
literal values.

4. Provide an implementation for createPolygonStyle and open up
polygon shapefile (like countries.shp or worldborders.shp)
private static Style createPolygonStyle(){
 Style style;
 PolygonSymbolizer symbolizer =
styleFactory.createPolygonSymbolizer();
 Fill fill = styleFactory.createFill(
 filterFactory.literal("#FFAA00"),
 filterFactory.literal(0.5)
);
 symbolizer.setFill(fill);
 Rule rule = styleFactory.createRule();
 rule.setSymbolizers(new Symbolizer[] { symbolizer });
 FeatureTypeStyle fts =
styleFactory.createFeatureTypeStyle();
 fts.setRules(new Rule[] { rule });
 style = styleFactory.createStyle();
 style.addFeatureTypeStyle(fts);
 return style;
}

5. In the above example we specify the fill color using a text string;
and make the fill slightly transparent.
You can also use a normal java Color as a literal expression; the
code is very smart about adapting to what is needed.
 private static Style createLineStyle() {
 Style style;

 LineSymbolizer symbolizer =
styleFactory.createLineSymbolizer();
 SLD.setLineColour(symbolizer, Color.BLUE);
 symbolizer.getStroke().setWidth(filterFactory.liter
al(1));
 symbolizer.getStroke().setColor(filterFactory.liter
al(Color.BLUE));

 Rule rule = styleFactory.createRule();
 rule.setSymbolizers(new Symbolizer[]
{ symbolizer });
 FeatureTypeStyle fts =
styleFactory.createFeatureTypeStyle();
 fts.setRules(new Rule[] { rule });
 style = styleFactory.createStyle();
 style.addFeatureTypeStyle(fts);
 return style;
 }

6. The exciting here is mixing and matching all of these ideas; try
looking at TextSymbolizer on your own and see if you can label
one of your shape files.

7. To read an SLD document for disk, we can make use of an
SLDParser. You can write out any style you create and use them in
a wide range of applications.
private static Style createFromSLD(File sld) {
 SLDParser stylereader;
 try {
 stylereader = new SLDParser(styleFactory,
sld.toURL());
 Style[] style = stylereader.readXML();
 return style[0];
 } catch (Exception e) {
 JOptionPane.showMessageDialog(null,
e.getMessage());
 System.exit(0);
 }
 return null;
}

8. You can now load the timezones.shp file and it will pick up and
parse the matching timezones.sld file.

9. You can combine many shapefiles, databases and raster images
onto the same MapContext.

10.Some WMS servers even let you provide an SLD as part of your
GetMap request.

	1Goals
	2Welcome
	3Introduction and Setup
	3.1Project for Required Jars
	3.2Project for This Workbook
	3.3Jar to Source AssociationS
	3.3.1Alternative for Power Eclipse Users

	4WMS Lab
	4.1Connect to a WMS
	4.2Operations on a Layer

	5CSV to Shape
	6Postgis Lab
	7Image Lab
	8Shape Lab

