A generic approach to manage metadata standards

Barde Julien\(^1\), Edgington Duane\(^1\), Desconnets Jean-Christophe\(^2\)

\(^1\)Monterey Bay Aquarium Research Institute (MBARI)

\(^2\)IRD, US ESPACE, Maison de la télédétection

Wednesday, September 26
Outline

1. Problem
2. Generic models to manage efficiently \{metadata element, value\} pairs
3. Implementation of model with open source software
4. Conclusion and outlook
1. **Problem**
 - Environmental (Informational) Resources management
 - Metadata management

2. Generic models to manage efficiently \{metadata element, value\} pairs

3. Implementation of model with open source software

4. Conclusion and outlook
Improvement of data processing and decision-making

Locating exhaustively the relevant Informational Resources (IR) is a challenge:

- IR are \textit{heterogeneous} (language, metadata, syntax/formats, semantic, access constraints, ...),
- IR are \textit{distributed} into heterogeneous Information Systems (IS) whose interoperability first involves matching issues.

\textbf{Key issue: \{metadata element, value\} pairs}

Once aware of existing IS, the priority to locate the related IR consists of managing the matching between the \textit{heterogeneous metadata elements (syntactic)} as well as between their \textit{heterogeneous values (semantic)}.
Metadata management still faces the lack of referentials

Heterogeneous metadata elements sets interfere with IS syntactic interoperability:

- similar core metadata elements (where? what? when? who?...) but different terms generate matching issues,
- new international metadata standards make the previous ones obsolete (because of redundant scopes) and bring archiving issues,
- recent use of XML Schemas to standardize their implementation (standards redundancy decreases as they are used as types libraries).

Whatever the standard, heterogeneous values of core metadata elements interferes with IS semantic interoperability: the use of common semantic and geographic/spatial referentials is a key issue.
Users tasks and needs

Users tasks are similar from one standard to another:

- **profiling** the metadata standards for their specific uses,
- **editing** *standards instances* (by relating values to profiles metadata elements),
- **locating** IR described with different standards by using a single *multi-criteria search engine*,
- **import/export** *standards instances* (usually XML).

Users need assistance to perform these tasks easily: a single centralized access, a tool with *homogeneous* and *friendly GUIs* assisting any complex valuation process (*Web mapping tool, controlled vocabularies, calendar*...).
Users tasks and needs

- User
 - import a new standard
 - edit a profile of a standard
 - edit an instance of a profile
 - locate instances of 1..* profiles of 1..* standards by querying a multi-criteria search engine
 - export/import standardized instances

(multi-standard) metadata management tool

- spatial referential
- semantic referential
Software engineers tasks and needs

Software (engineers) tasks consist of:

- satisfying user needs by complying with standards,
- matching terms related to similar core metadata elements to answer basic multi-standard queries,
- integrating semantic and spatial referentials to control related values,

Software (engineers) need to minimize their developments efforts (by answering the same user needs in the same way): generic approach. Whatever standard implemented: a single scripts set and the same components (WMS...).
The good, the bad and the ugly
Table of contents

1 Problem

2 Generic models to manage efficiently \{metadata element, value\} pairs
 - A generic model to manage heterogeneous metadata standards
 - A generic model to manage heterogeneous (thematic and spatial) values
 - Generic models summarization

3 Implementation of model with open source software

4 Conclusion and outlook
Efficient management of \{metadata element, value\} pairs

A generic model to manage metadata standards

Goal

A generic pattern (conceptual model) to describe any MD standard and then set up a multistandard metadata management tool assisting valuation. \{metadata element, value\}
Efficient management of \{metadata element, value\} pairs

A generic model to manage metadata standards

Conceptual model for multistandard metadata management

Goal

A generic pattern (conceptual model) to describe any MD standard and then set up a multistandard metadata management tool assisting valuation. \{metadata element, value\}
Use of terms in core metadata elements is often ambiguous:

- **Example:** "swordfish, sea temperature, Madagascar, spring"

- Semantic relationships management: synonyms ("*Xiphias gladius*..."), ...,

- The case of toponyms: keywords or spatial description?

Relationship between thematic and spatial descriptions

We make explicit the relationship between thematic and spatial concepts: "a spatial concept as a kind of thematic concept whose instances are geographic objects".
Efficient management of \{metadata element, value\} pairs

Generic models summarization

A generic model to link between MD and ontology

Compliance with standards

Model compliant with standardized implementations of metadata standards (XML Schemas, DTD...), (Web) Semantic standards SKOS (ISO 2788/5964)/RDF/OWL, main GI standard formats.
Table of contents

1. Problem

2. Generic models to manage efficiently \{metadata element, value\} pairs

3. Implementation of model with open source software
 - Underlying technical choices
 - Examples of a possible generic GUIs set

4. Conclusion and outlook
Architecture of the physical data infrastructure
Related open source software

Current implementations based on MDWeb open source software:
http://www.mdweb-project.org/

- a multistandard and multilingual metadata cataloging tool implementing a generic approach (like M3Cat, MetaCat...),
- a three-tier (client-server) architecture with:
 1. GUIs (in Web browsers) with components to assist metadata edition or searching:
 - spatial description with Web Mapping tools: Mapserver / Mapbuilder,
 - thematic description with Controlled vocabularies tool: home made.
 2. Applications scripts: PHP/Javascript/XML with Apache Http server,
MDWeb used as a basis to allow:

- Import of any new metadata standard by translating formal specifications into the PDM (automated with XML schemas),
- Set up of profiles of imported standards,
MDWeb used as a basis to allow:

- Import of any new metadata standard by translating formal specifications into the PDM (automated with XML schemas),
- Set up of profiles of imported standards,
- Metadata sheet edition with additional GUIs to assist RI thematic and spatial descriptions (automatizations, control...),
MDWeb used as a basis to allow:

- **Import of any new metadata standard** by translating formal specifications into the PDM (automated with XML schemas),
- **Set up of profiles** of imported standards,
- Metadata sheet edition with additional GUIs to assist RI thematic and spatial descriptions (automatizations, control...),
MDWeb used as a basis to allow:

- **Import of any new metadata standard** by translating formal specifications into the PDM (automated with XML schemas),
- **Set up of profiles** of imported standards,
- **Metadata sheet edition** with additional GUIs to assist RI thematic and spatial descriptions (automatizations, control...),
- **Generic/multi-standard search engine**,.
Same GUIs regardless of standards

MDWeb used as a basis to allow:

- **Import of any new metadata standard** by translating formal specifications into the PDM (automated with XML schemas),
- **Set up of profiles** of imported standards,
- **Metadata sheet edition** with additional GUIs to assist RI thematic and spatial descriptions (automatizations, control...),
- **Generic/multi-standard search engine**,
MDWeb used as a basis to allow:

- Import of any new metadata standard by translating formal specifications into the PDM (automated with XML schemas),
- Set up of profiles of imported standards,
- Metadata sheet edition with additional GUIs to assist RI thematic and spatial descriptions (automatizations, control...),
- Generic/multi-standard search engine,
- Import/export of standardized XML metadata sheet.
Table of contents

1 Problem

2 Generic models to manage efficiently \{metadata element, value\} pairs

3 Implementation of model with open source software

4 Conclusion and outlook
Conclusion

A single generic architecture based on standards and opensource software can manage:

- heterogeneous metadata standards (import, profiling, edition...),
- heterogeneous values: in particular controlled terms and spatial descriptions to describe core metadata elements,
- a common indexation table duplicating core metadata elements with homogeneous terms and values used by the search engine (no wrapper needed),
- spatial IR described by metadata can be processed after being retrieved: either locally or remotely by using interoperable protocols or/and rich clients (WMS, Qgis, Udig...).

Data retrieval is thus improved, in particular queries expansion by using standardized semantic or spatial relationships (requests portability). Both user’s and software engineer’s tasks and needs are taken into account by a single scripts set.
Outlook for the *metadata management*:

- complete the implementation of all use cases:
 - generic metadata standards import and edition of profiles and instances,
 - generic / multi-standard metadata search engine,
 - generic standardized XML import and export.

- improve both current spatial queries and requests expansion process by using richer semantic and spatial relationships.

Outlook for *data processing*: use the current architecture to homogenize formats and semantic (just like metadata...) and then display (plot...), subset / aggregate... with ability to use interoperable rich clients instead of light clients.